
GPU Programming
and Productivity
in Software Development

MANUEL ARENAZ

Associate Professor

V Jornadas de Supercomputación y Avances en Tecnología COMPUTAEX
Cáceres, November 19-20, 2012
http://www.cenits.es/noticias/241012-fundacion-computaex-organiza-v-jornadas-
supercomputacion-avances-tecnologia

CTO & Co-founder
manuel.arenaz@udc.es manuel.arenaz@appentra.com

Agenda
o  Do I really need parallelism?
o  The HPC software marketplace can be organized from the

productivity viewpoint?
o  What do I need to learn to write HPC Apps?
o  How can I be more productive?
o  Are there “Design Patterns” to help writing HPC Apps?
o  Can you give an example of a parallel design pattern?
o  Are there Hw-independent key concepts?
o  Are there frequently used design patterns for HPC Apps?
o  Can you propose a development methodology for GPU

programming?
o  Can you meassure productivity?
o  Conclusions

Do I really need parallelism?

Historical Perspective

o  Moore Law:
The number of
transistors in a
chip doubles
every 18 months

How do we program modern systems
more productively

How do we use transisors productively

1st Software Crisis (60s-70s)
o  Problems:

n  Programming in assembly language
n  Computers can execute programs

much more complex
o  Solution:

n  Higher level of abstraction:
Procedural programming

n  Portability & Performance
n  New languages & tools: C, Fortran

swap(int v[], int k)
{int temp;
 temp = v[k];
 v[k] = v[k+1];
 v[k+1] = temp;
}

swap:
 muli $2, $5,4
 add $2, $4,$2
 lw $15, 0($2)
 lw $16, 4($2)
 sw $16, 0($2)
 sw $15, 4($2)
 jr $31

00000000101000010000000000011000
00000000100011100001100000100001
10001100011000100000000000000000
10001100111100100000000000000100
10101100111100100000000000000000
10101100011000100000000000000100
00000011111000000000000000001000

Binary machine
language
program
(for MIPS)

C compiler

Assembler

Assembly
language
program
(for MIPS)

High-level
language
program
(in C)

o  Advances in computer architecture ensure that
performance doubles every 2 years!

Performance for Free (80s-90s)

Source: “J.L. Hennessy y D.A. Patterson: Computer Architecture: A Quantitative
Approach, Morgan Kaufmann, 4ª Edition, 2008”

o  Performance
is a Hw issue

o  Sw issues:
Recompile
your program
and run
faster

o  Problems:
n  Impossible to build and

maintain big, complex
and robust Apps
developed by hundreds
of programmers

n  Again, computers can
execute programs much
more complex

o  Solution:
n  Higher level of abstraction: Object-oriented programming
n  New languages & tools: C++, C#, Java
n  Portability… but don’t care about performance!

2nd Software Crisis (80s-90s)

n  Heat dissipation
problems

n  Not enough
instruction level
parallelism
(ILP) in
applications

n  Increasing gap
between CPU
speed and
memory speed

“Poor” Performance Gain (>2002)

o  Key challenges for the manufacturers:

“Poor” Performance Gain (>2002)
o  Manufacturers (Intel, AMD, IBM, ARM) change their

strategy
n  Transistors are not used to design more complex processors
n  New “multi-core processors”

 are lunched to the market.

o  New Moore Law:
 The number of
cores in a processor
will double every 18
months.

Hw Marketplace Forecast

Courtesy: CAPS
HMPP CoC Europe
“Write once, deploy
many-core”

TOP500 40th November 2012

TOP500 40th November 2012

TOP500 40th November 2012

Urgent need for new software
to increase productivity

3rd Software Crisis

3rd Software Crisis

Applications underutilize
all the computational power

3rd Software Crisis

o  The abstraction level of current languages&tools provides
great freedom to programmers…, but they are not aware
of hardware features
n  30-year-old programs run today with much better performance!

o  No “for-free” performance gain any more
n  The performance of mono-core Apps will not improve as in the past!
n  The hardware features are now exposed to the programmer!

o  New Apps still…
n  … demand more-and-more performance
n  … demand portability & maintainability

3rd Software Crisis

Parallel-Programming & HPC techniques
are a must to exploit modern systems

Do I really need parallelism?

The HPC software marketplace
can be organized from the
productivity viewpoint?

Software Marketplace

MANUAL

AUTOMATIC

SEMIAUTOMATIC

CUDA OpenCL ArrayFire MPI Posix
Threads

HMPP

PGIACC

+

-

ICC XL
Visual
Studio

Pro Fortran

NAG Fortran

Math library

Technological Comparison

HIGH

MEDIUM

LOW

Software Technologies

MANUAL

AUTOMATIC

SEMIAUTOMATIC

+

-
Threads

Intrinsics
SSE

The HPC software marketplace
can be organized from the
productivity viewpoint?

What do I need to learn to
write HPC Apps?

Sequential App Industrial/Scientific
Domain

•  Knowledge
•  Expertise
•  Methods
•  Techniques
•  Tools

•  Knowledge in Computer Science
•  Algorithm design and implementation
•  Programming languages
•  Compilers, libraries & other tools •  Coding&Testing

•  Validation

Engineer
Scientist
Researcher

Science & Engineering

CPU

GPU
Sequential

App

Compiler
CPU

HPC App

GPU
HPC App

Parallel
Source code

Parallel
Source code

Compiler

HPC App

•  Knowledge in Parallel Programming
•  Knowledge in Computer Architecture
•  Parallelization-enabling tools (profilers,

libraries, compilers, languages…)

Industrial
Scientific
Domain

Science & Engineering… & HPC

o  You need deep knowledge of your business…
o  But also deep knowledge of Hw & HPC.

Learn to be a Superman

What do I need to learn to
write HPC Apps?

How can I be more
productive?

Do not try to be a Superman

You don't need
to be an expert
in HPC.

Just focus
on your
business.

CPU

GPU
Sequential

App

Compiler
CPU

HPC App

GPU
HPC App

Parallel
Source code

Parallel
Source code

Compiler

HPC App

Industrial
Scientific
Domain

Engineer
Scientist
Researcher Engineer in Computer Science

Interdisciplinary Teams

Fully Automatic Tools

Engineer
Scientist
Researcher

MANUAL

AUTOMATIC

SEMIAUTOMATIC

+

-
Threads

Intrinsics
SSE

CPU

GPU

Sequential
Source code

Compiler
CPU

HPC App

GPU
HPC App

Parallel
Source code

Parallel
Source code

Compiler

o  Automatic parallelization of sequential Apps
o  Smart source-to-source auto-parallelizer

n  R+D+i on advanced parallelizing compilation techniques

ParallWare by Appentra

Software “Design Patterns”

Engineer
Scientist
Researcher

MANUAL

AUTOMATIC

SEMIAUTOMATIC

+

-
Threads

Intrinsics
SSE

How can I be more
productive?

Are there “Design Patterns”
to help writing HPC Apps?

Object-Oriented Design Patterns

2nd Software Crisis (80s-90s)

n  Build&Maintain big&complex&robust Apps
n  Object-oriented programming
n  New languages & tools: C++, C#, Java
n  App-oriented approach: Design patterns
n  Portability at the cost of performance

Design Patterns for HPC

o  In the literature there are many different types of design
patterns for HPC Apps.

o  Design patterns for parallelism discovery:
n  Task decomposition pattern
n  Data decomposition pattern

o  Design patterns for the algorithm structure:
n  Task parallelism pattern
n  Divide and conquer pattern
n  Pipeline pattern
n  Event-based coordination pattern

o  Design patterns for the program structure:
n  SPMD pattern
n  Master/Slave pattern
n  Shared queue pattern

o  …/…

The App-Oriented Perspective
o  Modern business areas increasingly rely on numerical

simulation
n  E.g., automotive, aerospace, civil engineering, chemistry

o  Scientists&Engineers write compute-intensive Apps that
compute an approximation of the solution

o  Well-known domain-specific patterns are used to avoid
reinventing the wheel.
n  Fast&Optimized libraries

o  Examples:
n  Matrix-Vector product
n  Vector-Vector add
n  Vector-Vector inner product
n  FFT
n  Sort
n  Compute PI
n  …/…

Text patterns

Syntactic patterns

Semantic patterns

Domain-independent
patterns

Domain-specific patterns

K
no

w
le

dg
e

ab
ou

t t
he

 A
pp

+

-

The App-Oriented Perspective
o  Sequential Apps are

written in programming
languages

o  Programming languages
provide a limited set of
building blocks
n  Programs, functions,

procedures
n  Loops (e.g., for, while)
n  Conditional instructions

(e.g., if-then-else, switch)
n  Processing instructions

(e.g., +, *, -)

Text patterns

Syntactic patterns

Semantic patterns

Domain-independent
patterns

Domain-specific patterns

K
no

w
le

dg
e

ab
ou

t t
he

 A
pp

+

-

How domain-independent
patterns look like?

The App-Oriented Perspective

Both sequential Apps compute
a sum of values

Code: Compute the sum of the entries of an array.

sum = 0.0	

for(i=0; i<N; i++) {	

 sum = sum + (4.0 / (1+((i - 0.5)/N)2))	

}	

pi = sum / N	

Code: Compute an approximation of ∏ using the
 integration method.

sum = 0.0	

for(i=0; i<N; i++) {	

 sum = sum + A[i]	

}	

Are there “Design Patterns” to
help writing HPC Apps?

Can you give an example of a
parallel design pattern?

o  Aproximación del valor de ∏ mediante la integración de 4/(1+x2)
en el intervalo [0,1].

o  Dividir el intervalo en N subintervalos de longitud 1/N.

o  Para cada subintervalo se
calcula el área del rectángulo
cuya altura es el valor de
4/(1+x2) en su punto medio

o  La suma de las áreas de los N
rectángulos aproxima el área
bajo la curva

o  La aproximación de ∏ es más
precisa cuando N→∞.

Case study: Algorithm ∏

o  Reparto del trabajo de calcular el area de N
rectángulos entre un P procesadores.

o  Nº rectángulos por
procesador:

 Np=N/P
donde p∈ {0,…P-1}

o  Estimación de ∏ :
 (S0+…+Sp-1)/N

…

p=0
 S0

p=P-1
 SP-1

Parallelization of Algorithm ∏

Parallelization of Algorithm ∏

o  Stage 1:
n  Broadcast N, P

N,P

N,P N,P N,P

Np=N/P Np=N/P Np=N/P

S1 S2 S0

Np=N/P

S3

S

o  Stage 2:
n  Distribute loop iterations
n  Compute partial sums Sp

at each processor

o  Stage 3:
n  Gather all partial sums
n  Compute global sum

S = S0+…+Sp-1
Parallel Programming Framework	

MPI
OpenMP

OpenACC

SSE

Parallel Implementations of ∏

OpenMP Execution Model

sum = 0.0	

#pragma omp parallel shared (N) private(i)\	

 reduction(+:sum)	

{	

#pragma for schedule(static)	

for(i=0; i<N; i++) {	

 sum = sum + (4.0 / (1+((i - 0.5)/N)2))	

}	

}	

	

/* Cálculo de PI */	

pi = sum / N	

OpenMP

sum = 0.0	

#pragma omp parallel for reduction(+:sum)	

for(i=0; i<N; i++) {	

 sum = sum + (4.0 / (1+((i - 0.5)/N)2))	

}	

/* Cálculo de PI */	

pi = sum / N	

sum = 0.0	

#pragma omp parallel shared (N) private(i)\	

 private(sum_aux)	

{	

 sum_aux = 0;	

 #pragma for schedule(static)	

 for(i=0; i<N; i++) {	

 sum_aux = sum_aux + (4.0 / (1+((i - 0.5)/N)2))	

 }	

 #pragma atomic	

 sum = sum + sum_aux;	

}	

	

/* Cálculo de PI */	

pi = sum / N	

MPI Execution Model

Inicializacion(&mytid,&li,&ls)	

	

/* Cálculo del sumatorio local */ 	

sum = 0	

for(i = li; i < ls; i++) {	

 sum = sum + (4.0 / (1+((i - 0.5)/N)2))	

}	

	

/* Cálculo del sumatorio global */	

Calculo sum_global(&sumglobal)	

	

/* Cáculo de PI */	

if(mytid=0) {	

 pi = sumglobal / N	

}	

calculo_sum_global(&sumglobal) {	

 if(mytid=0) {	

 for(proc=1; proc<P; proc++) {	

 pvm_recv(-1,TAG)	

 pvm_upkint(&sum,1,1)	

 sum_global += sum	

 }	

 } else {	

 pvm_initsend(PvmDataDefault)	

 pvm_pkint(&sum,1,1)	

 pvm_send(pvm_parent(),TAG)	

 }	

}	

Inicializacion(&mytid,&li,&ls) {	

 if(pvm_parent() = -1)	

 pvm_spawn(PROG,...,P,tids)	

 mytid=pvn_mytid()	

 li=mytid*N/P	

 ls=(mytid+1)*N/P	

}	

MPI

Definition
of parallel
region

Synch&data
management

Work-load
management

Code: PVM implementation with block/consecutive work-sharing.

GPU Design Goals

Source: http://www.legitreviews.com/article/1100/1/

GPU Architecture

Massively data parallel

Needs 1000s of computation threads
to be efficient

General purpose architecture

GPU Execution Model

o  Host-driven execution:
n  Allocate memory space

on the accelerator
n  Initiate data transfers
n  Launch computations

(streaming model)
n  Wait for completion
n  Deallocate memory space

DATA
TRANSFERS

CODE
TRANSFERS

CUDA

Definition of
parallel region

Synch&data
management

Work-load
management

OpenACC

Definition of
parallel region

Synch and data
management

Work-load
management

SSE Execution Model

SSE (SIMDization/Vectorization)

Code: Inner product of two vectors.

Code: SSE implementation of the inner product of two vectors.

Joint Execution Model

VECTOR VECTOR

Joint Execution Model

VECTOR

GPU Levels of Parallelism
o  Clusters expose multiple levels of parallelism…"
o  And GPUs also expose multiple levels of parallelism!"

VECTOR VECTOR

GPU Levels of Parallelism

Fuente: http://www.legitreviews.com/article/1100/1/

GPU Levels of Parallelism

o  Coarse-grain: "gangs!
o  Fine-grain: "workers!
o  Finest-grain: "vector!
"

GPU internal architecture

#Blocks"
#Threads/Block"
#WarpThreads"

#Processes"
#Threads/Process"
Instructions SSE"

Cluster of PCs

Can you give an example of a
parallel design pattern?

Are there Hw-independent
key concepts?

Race Conditions

o  Race conditions
are programmer’s
nightmare

o  Make the result of
your parallel code
unpredictable.

o  What are “race
conditions”?

o  How can we
handle “race
conditions”?

Race Conditions

What is the value of
variable “x” at the end
of the parallel region?

x=0;
#pragma acc parallel
{
 #pragma acc loop gangs
 for (int i=0; i<N; i++) {
 x = x + 1;
 }
}

Race Conditions

What is the value of
variable “x” at the end
of the parallel region?

x=0;
#pragma acc parallel
{
 #pragma acc loop gangs
 for (int i=0; i<N; i++) {
 x = x + 1;
 }
}

Scenario 1:
 Thread0 (“x=x+1”) finishes before
Thread1 begins its computation
(“x=x+1”) and the value is “x=2”

Thread0: r1=0+1
Thread0: x=r1
Thread1: r2=1+1
Thread1: x=r2

Race Conditions

What is the value of
variable “x” at the end
of the parallel region?

x=0;
#pragma acc parallel
{
 #pragma acc loop gangs
 for (int i=0; i<N; i++) {
 x = x + 1;
 }
}

Scenario 1:
 Thread0 (“x=x+1”) finishes before
Thread1 begins its computation
(“x=x+1”) and the value is “x=2”

Thread0: r1=0+1
Thread0: x=r1
Thread1: r2=1+1
Thread1: x=r2

Scenario 2:
 Thread0 (“x=x+1”) does not finish
before Thread1 begins (“x=x+1”)
and the value is “x=1”

Thread0: r1=0+1
Thread0: x=r1
Thread1: r2=0+1
Thread1: x=r2

w = 1/N	

	

/* Cálculo del sumatorio */	

sum = 0.0	

for(i=0; i<N; i++) {	

 x = (i - 0.5) / N	

 sum = sum + (4.0 / (1+ x2))	

}	

	

/* Cálculo de PI */	

pi = sum * w	

An App-oriented approach

PRIVATIZATION
Variables that store
temporary results and whose
value can be discarded at the
end of the parallel region,

SINCHRONIZATION AND
INFORMATION
INTERCHANGE
Variables that store final
results whose value must be
rebuilt from temporary
results.

WORK SHARING
Map compuational
load (loop
iterations) to
threads,

DEINITION OF
THE PARALLEL
REGION
Identify the code
fragment that can
be executed
concurrently

SHARING
Read-only variables that save
input data.

Key App-oriented concepts

o  Parallel region
n  Code fragment executed concurrently on sevral processors

o  Work-sharing
n  Strategy to map computations to processors (e.g., block, cyclic).

o  Privatization
n  Identify thread-local temporary values.

o  Synchronization
n  Synch instructions between the threads to preserve the semantics of

the program and avoid “race conditions” (p.ej., critical, barrier).

o  Reductions
n  Identify computations that can be parallelized in three stages:

distribution+computation+reconstruction.
n  Significant reduction in synch instructions, which raises performance.

MPI

OpenMP

OpenACC
CLAUSES DIRECTIVES

parallel kernels data loop declare update wait cache
if x x x x

async x x x x

num_gangs x

num_workers x

private x

firstprivate x

reduction x x

create

create/present
copy/pcopy
copyin/pcopyin
copyout/pcopyout

x x x x

collapse x

gang/worker x

seq x

independent x

host/device x

Are there Hw-independent
key concepts?

Are there frequently used
design patterns for HPC Apps?

Assignment

o  Modify the value of a set of memory locations
overwriting the previous values:

A = B
 The previous value is lost, it is not used to update
the value saved in the memory location.

o  Types of assignments:
n  Scalar assignment: s=1
n  Regular assignment: A(h)=1
n  Irregular assignment: A(f(h))=1

Scalar Assignment

Code: Computation of ∏

w = 1/N	

/* Cálculo del sumatorio */	

sum = 0.0	

#pragma omp parallel for \	

 reduction(+:sum) \	

 private(x)	

for(i=0; i<N; i++) {	

 x = (i - 0.5) / N	

 sum = sum + (4.0 / (1+ x2))	

}	

/* Cálculo de PI */	

pi = sum * w	

o  Code variant that uses
temporary variables to
store partial results.

Regular Assignment

subroutine amuxe (y,a,x,nrows,ncols)	
real*8 y(*), a(MaxNrows,*), x(*)	
integer nrows, ncols(*)	
integer i, j	
	
#pragma omp parallel for shared(y)	

do i = 1,nrows	

	y(i) = 0.0	
enddo	
do i = 1,nrows	

	do j= 1,ncols(i)	
	 	y(i) = y(i) + a(i,j)*x(j)	
	enddo	

enddo	
return	
end	

Code: Product of sparse matrix and dense vector.
Format: Matrix without zeros at the end of the row.
Source: Inspired in SparskitII, module MATVEC,

 routine amuxe.f (format ellpack-itpack)

subroutine amux (n, x, y, a,ja,ia)	
real*8 x(*), y(*), a(*)	
integer n, ja(*), ia(*)	
integer i, k	
	
#pragma omp parallel for … \	

 shared(y)	

do i = 1,n	

	y(i) = 0.0d0	
	do k=ia(i), ia(i+1)-1 	
	 	y(i) = y(i) + a(k)*x(ja(k))	
	enddo	

enddo	
return	
end	

Regular Assignment

subroutine amux (n, x, y, a,ja,ia)	
real*8 x(*), y(*), a(*)	
integer n, ja(*), ia(*)	
real*8 t	
integer i, k	
	
#pragma omp parallel for … \	

 private(t)	

do i = 1,n	

	t = 0.0d0	
	do k=ia(i), ia(i+1)-1 	
	 	t = t + a(k)*x(ja(k))	
	enddo	
	y(i) = t	

enddo	
return	
end	

Code: Product of sparse matrix by vector.
Format: CRS sparse matrix.
Source: SparskitII, module MATVEC, routine amux.f

Regular Assignment

Reduction

o  Update the value of a set of memory locations as a
function of the previous value stored in each
memory location:

A = A ⊕ B
 The operator ⊕ is associative and commutative
(e.g., sum, product, max/min).

o  Types of reductions:
n  Scalar reduction: s=s+1
n  Regular reduction: A(h)=A(h)+1
n  Irregular reduction: A(f(h))=A(f(h))+1

/* Cálculo del sumatorio */	

sum = 0.0	

#pragma omp parallel shared (N) private(i)\	

 reduction(+:sum)	

{	

#pragma for schedule(static)	

for(i=0; i<N; i++) {	

 sum = sum + (4.0 / (1+((i - 0.5)/N)2))	

}	

}	

	

/* Cálculo de PI */	

pi = sum / N	

Scalar Reduction

Code: Computation of ∏

minlen = ia(2)-ia(1)	
irow = 1	
#pragma omp parallel for \	

 reduction(minpos:minlen,irow) \	

 private(len)	

do i = 2,nrow	

	len = ia(i+1)-ia(i)	
	if (len.lt.minlen) then 	
	 	minlen = len	
	 	irow = i	
	endif	

enddo	

Code: Computation of the value and
 the position of the minimum
 within an array

Format: CRS sparse matrix
Source: Inspired in SparskitII,

 module UNARY, routine blkfnd.f

/* Cálculo del contador */	

cont=0	

#pragma omp parallel private (x,y) \	

 reduction(+:cont)	

{	

 #pragma omp for schedule(static,1)	

 for(i=0; i<N; i++) {	

 x=aleatorio()	

 y=aleatorio()	

 if(x2+y2 ≤ 1) {	

 cont++	

 }	

 }	

}	

/* Cálculo de PI */	

pi=4*cont/N	

/* Cálculo del contador */	

cont=0	

#pragma omp parallel private (x,y) \	

 reduction(+:cont)	

{	

 #pragma omp for schedule(static)	

 for(i=0; i<N; i++) {	

 x=aleatorio()	

 y=aleatorio()	

 if(x2+y2 ≤ 1) {	

 cont++	

 }	

 }	

}	

/* Cálculo de PI */	

pi=4*cont/N	

Scalar Reduction

/* Cálculo del contador */	

cont=0	

#pragma omp parallel private (x,y) \	

 reduction(+:cont)	

{	

 #pragma omp for	

 for(i=0; i<N; i++) {	

 x=aleatorio()	

 y=aleatorio()	

 if(x2+y2 ≤ 1) {	

 cont++	

 }	

 }	

}	

/* Cálculo de PI */	

pi=4*cont/N	

Scalar Reduction

Code: Computation of the sum of the entries of an array.

Regular Reduction

Code: Vector addition and accumulation

Regular Reduction

Recurrences

o  Update the value of a set of memory locations as a
function of the previous values stored in several the
memory locations:

A = A ⊕ … ⊕ A ⊕ B

o  Types of recurrences:
n  Regular recurrences: A(h)=A(h-1)+1
n  Irregular recurrences: A(f(h))=A(g(h))+1

Recurrences

do h = 1,Adim	
 hist(h) = 0	
enddo	
do h = 1,fDim	
 hist(f(h)) = hist(f(h)) + 1	
enddo	
do h = 2,Adim	
 hist(h) = hist(h) + hist(h-1)	
enddo	

Code: Computation of the accumulative
 histogram of an irregular access pattern.

Source: Inspector with load-balancing used
 in the execution of parallel irregular
 reductions.

Regular Assignment

Irregular Reduction

Regular Recurrence

Recurrences

subroutine lsol (n,x,y,al,jal,ial)	
integer n, jal(*),ial(n+1)	
real*8 x(n), y(n), al(*)	
integer k, j	
real*8 t	
	
x(1) = y(1)	
do k = 2, n	
 t = y(k)	
 do j = ial(k), ial(k+1)-1	
 t = t-al(j)*x(jal(j))	
 enddo	
 x(k) = t	
enddo	
return	
end	

Code: Solver of a system of equations;
 standard forward-elimination method.

Format: Lower triangular unit matix; CRS format.
Source: SparskitII, module MATVEC, routine lsol.f

Are there frequently used
design patterns for HPC Apps?

Can you propose a
development methodology for
GPU programming?

Agile Development
o  Reduce uncertainty as much

as possible.
o  Get feedback from the market

to avoid leaps-of-faith.
o  Run experiments following the

cycle Build-Meassure-Learn.
o  Methodology:

n  Prototyping & Incremental
n  Sprints
n  Evertything is a deliverable
n  E.g. SCRUM

o  Related works:
n  Business model canvas
n  Lean startup model

Devel Methodology

Courtesy: CAPS
HMPP CoC Europe
“Write once, deploy
many-core”

Devel Methodology for GPUs

Pe
rf

or
m

an
ce

+

-

1.  Coalescence
2.  GPU BlockSize
3.  Register pressure
4.  Shared memory
5.  Bank conflicts
6.  Texture memory

•  Extract parallelism
•  Streamize source code
•  Data transfers
•  Race conditions
•  Privatization
•  Data dependences

Courtesy: CAPS
HMPP CoC Europe
“Write once, deploy
many-core”

Can you propose a
development methodology for
GPU programming?

Can you meassure
productivity?

Experiment

o  Benchmarks:
n  Sobel: Sobel edge filter written in C
n  Matmul: Matrix-Matrix product written in C
n  Laplace2D: Laplace transformation written in C

o  Team skills&expertise:
n  Master degree in Computer Science
n  Basic skills in parallel programming: PVM/MPI, OpenMP

o  Results:
n  Performance (speedup)
n  Development time (days)

Sequential Parallel
0

50
100
150
200
250
300
350
400
450

Time (s)

Speedup
0

0,5

1

1,5

2

2,5

3

3,5

4

Performance (Intel i7 4xcore)

Sequential Parallel
0
2
4
6
8

10
12
14
16
18

Time (s)

Speedup
0

0,5

1

1,5

2

2,5

3

3,5

4

Laplace2D Sobel Matmul

Sequential Parallel
0

10
20
30
40
50
60
70
80

Time (s)

Speedup
0

0,5

1

1,5

2

2,5

3

3,5

4

Development Time
OpenMP

OpenACC

MANUAL - Programmer MANUAL - Expert AUTOMATIC - Parallware
0

2

4

6

8

10

12

LAPLACE

Ti
m

e
(d

ay
s)

MANUAL - Programmer MANUAL - Expert AUTOMATIC - Parallware
0

1

2

3

4

5

6

7

SOBEL

Ti
m

e
(d

ay
s)

MANUAL - Programmer MANUAL - Expert AUTOMATIC - Parallware
0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

MATMUL

Ti
m

e
(d

ay
s)

MANUAL - Programmer MANUAL - Expert AUTOMATIC - Parallware
0

1

2

3

4

5

6

7

8

9

10

LAPLACE

Ti
m

e
(d

ay
s)

MANUAL - Programmer MANUAL - Expert AUTOMATIC - Parallware
0

1

2

3

4

5

6

7

SOBEL

Ti
m

e
(d

ay
s)

MANUAL - Programmer MANUAL - Expert AUTOMATIC - Parallware
0

0,5

1

1,5

2

2,5

3

MATMUL

Ti
m

e
(d

ay
s)

Can you meassure
productivity?

Conclusions

Increase Your Productivity

o  Increasing programmer’s productivity
is a must. Whenever possible:
n  Use automatic or semiautomatic tools
n  Avoid manual tools that require deep

knowledge of Hw and HPC techniques

o More sophisticated software tools are
needed
n  Appentra’s ParallWare is a step forward

towards fully automation

Avoid leaps-of-faith

Engineer
Scientist
Researcher

MANUAL

AUTOMATIC

SEMIAUTOMATIC

+

-
Threads

Intrinsics
SSE

Parallel Design Patterns

o  Parallel design patterns are effective
o  The complexity lays in identifying the

parallel design pattern in real Apps
n  An algorithm may be coded in an

unlimited number of different ways
n  Handle pointers, calls, complex control

flows, dynamic memory, sparse
computations, etc…

GPUs & Productivity
o  OpenACC is a promising approach

n  Based on compiler directives

o  Fast development of hybrid CPU/GPU Apps
n  For C and Fortran programming languages

o  Beware of compiler-dependent behaviors
n  CAPS HMPP (first commercial version)
n  PGI ACC (by the end of this year)

o  Use CUDA/OpenCL for more control and more
performance

GPU Programming
and Productivity
in Software Development

MANUEL ARENAZ

Associate Professor

V Jornadas de Supercomputación y Avances en Tecnología COMPUTAEX
Cáceres, November 19-20, 2012
http://www.cenits.es/noticias/241012-fundacion-computaex-organiza-v-jornadas-
supercomputacion-avances-tecnologia

CTO & Co-founder
manuel.arenaz@udc.es manuel.arenaz@appentra.com

